Monday, May 18, 2015 Not for Sailors Only: Sailmaking--Think High-Tech, Stateof-the-Art

If you think sailmaking is a craft reserved for wizened old sea dogs with needles and palm-protectors, you're in for a surprise. Bary (with one r) Gately of Quantum Sails shows how sailmaking has morphed into a high-tech business, with computerized design, robot-staffed production lines, and 21st-century materials that even non-sailors will find fascinating. He'll also give us the lowdown on 10 things that captains of power-driven vessels need to know about sailboats--for their own protection as well as that of the sailors.

- Modern fibers[<u>edit</u>]
- The characteristics of a sail are due to design, construction and the attributes of the fibers, which are woven together to make the sail cloth. The following sections discuss the attributes of fibers assuming a good design and careful construction. There are six key factors in evaluating a fiber for suitability in weaving a sail-cloth:
- <u>Modulus (of elasticity)</u>: elastic stretch resistance per cross sectional area of fiber, analogous to the stiffness in a spring. Higher is better for upwind sails.
- <u>Tensile strength</u> or tenacity: breaking strength, measured as a force per cross sectional area of fiber. Higher is better for sails.
- Creep, which describes the long term stretch of a fiber or fabric. A material with creep may have a superior modulus, but lose its shape over time.
- <u>UV</u> (ultra violet) Resistance: strength loss from exposure to the Sun's UV rays measured by a standardized exposure test.
- Flex Loss: Strength lost due to bending, folding, or flogging, which is frequently measured with an industry standard 50 fold test.
- Cost of the material
- There is no perfect solution since in most cases the increase of one attribute generally results in the decreased attractiveness of another. Reduced stretch generally also reduces the flexibility causing a trade-off of performance for durability. Solving both problems generally sends the price out of range for most sailors.

Sail Design

Design the Sailplan

- Line drawings are crucial to make sure the measurements taken work with the boat.
- We still use hand drawn sketches to lay down the initial design before heading to the computer.
- By sketching sailplans, we can be sure the desired sail will work with the boat's dimensions.

Computer Aided Design

- Sails are a three-dimensional shape.
- Using a CAD program built specifically for sails, we can design a layout that will cut a two-dimensional roll of material to produce the curved shape desired when the sail is set in a breeze.

Computer Aided Design

- The design program gives us control over the minutia of the sail.
- From camber to chord, luff to leech, entry to exit, we can fine tune down to the millimeter.

Computer Aided Design

Once the overall sail is designed, proper placement for area reefs can be discerned, corner patches built out, and even draft stripes marked.

Sail Materials and Cuts

Materials

- Dacron
- Nylon
- Laminates
- String Sails
- Taffeta Advantage

Cuts

- Cross Cut
- Triradial
- String

Off the shelf / Paneled sails

44 Families of Laminates from the 4 Major Cloth Manufacturers.

Cross Cut

Woven

- Why is woven material Polyester or Nylon?
 - Polyester and Nylon have high shrink factors making a tight weave possible

Dacron: The Workhorse

- Pros:
 - Extremely long life (10+ years)
 - Cost effective
- Cons:
 - Poor shape retention
 - Heaviest material

Photos Courtesy of Challenge Sailcloth

Triradial

Mylar: High Tech Laminates

Pros:

- Holds shape better than Dacron
- Lightweight
- UV Resistance
- Many Options

Cons:

- Cost varies greatly across materials
- Shorter lifespan
- Possible mildew issues

Custom Laminate / Membrane

Fusion M

String Sails: Cutting Edge

Pros:

- Superior shape life an load bearing
- Extremely lightweight
- No catastrophic failur

Cons:

Most expensive

Taffeta: Extending Mylar's Life

- Taffeta Backing can be used on Mylar sails and String sails to extend the life.
 - Significantly reduces breakage due to hinging
 - Adds UV protection
 - Can be either single or double sided
 - Adds weight to the (~.75 oz per side)

What had fiber advancement done for us?

- Lighter Sails
- Lighter boats
- Higher power to weight ratio (sq top Mainsails)

How Long Should A Sail Last

Challenge Sailcloth Research

- UV
- Flogging
- Exposure & Cycling Instron Testing
- Hours of use

How Long Should A Sail Last

Woven Polyester

- Approximately 3000 Hours
- 26 Weekends Annually
- 12 Hours Per Weekend
- 312 Hours Per Year
- 9.62 Years
- Performance versus Perimeter

How Long Should A Sail Last

Fusion M

- Approximately 2000 Hours
- 26 Weekends Annually
- 12 Hours Per Weekend
- 312 Hours Per Year
- 6.41 Years
- Around The World In 83 Days

10 things that captains of power-driven vessels need to know about sailboats--for their own protection as well as that of the sailors.